
1-1

ME 306  Fluid Mechanics II
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Potential Flow
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Inviscid (Frictionless) Flow

• Continuity and Navier-Stokes equations govern the flow of fluids.

• For incompressible flows of Newtonian fluids they are

𝛻 ⋅ 𝑉 = 0

𝜌
𝐷𝑉

𝐷𝑡
= 𝜌

𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝑉 = 𝜌  𝑔 − 𝛻𝑝 + 𝜇𝛻2𝑉

• These equations can be solved analytically only for a few problems.

• They can be simplified in various ways.

• Common fluids such as water and air have small viscosities.

• Neglecting the viscous term (zero shear force) gives the Euler’s equation.

𝜌
𝐷𝑉

𝐷𝑡
= 𝜌  𝑔 − 𝛻𝑝

• Still difficult get a general analytical solution for the unknowns 𝑝 and 𝑉.

𝜇𝑤𝑎𝑡𝑒𝑟 = 10−3 Pa s
𝜇𝑎𝑖𝑟 = 2 × 10−5 Pa s
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Inviscid Flow (cont’d)

• Bernoulli Equation (BE) is Euler’s equation written along a streamline.

𝑝

𝜌𝑔
+

𝑉2

2𝑔
+ 𝑧 = constant along a streamline

Exercise: Starting from the Euler’s equation derive the BE.

Airfoil

Viscous flow close to the object and in the
wake of it (non negligible shear forces)

Adapted from
http://web.cecs.pdx.edu/~gerry/class/ME322

Inviscid flow away from the 
object (negligible shear forces)
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Inviscid and Irrotational Flow

• To simplify further we can assume the flow to be irrotational.

 𝜉 = 2𝜔 = 𝛻 × 𝑉 = 0 (irrotational flow)

• Question: What’s the logic behind irrotationality assumption?

• Irrotationality is about velocity gradients.

 𝜉 =
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
 𝑖 +

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 𝑗 +

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
𝑘 = 0

or

 𝜉 =
1

𝑟

𝜕𝑉𝑧

𝜕𝜃
−

𝜕𝑉𝜃

𝜕𝑧
𝑖𝑟 +

𝜕𝑉𝑟

𝜕𝑧
−

𝜕𝑉𝑧

𝜕𝑟
𝑖𝜃 +

1

𝑟

𝜕 𝑟𝑉𝜃

𝜕𝑟
−

1

𝑟

𝜕𝑉𝑟

𝜕𝜃
𝑖𝑧

Vorticity (ksi)          Angular velocity



• One special irrotational flow is when all velocity gradients are zero.

• An example is uniform flow such as 𝑢 = 𝑈, 𝑣 = 0, 𝑤 = 0.

• In many flow fields there will be uniform-like flow regions.

Exercise: Sketch the developing flow inside a pipe with uniform entrance and 
show the uniform and non-uniform flow regions.
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Inviscid and Irrotational Flow (cont’d)

𝑥

𝑦

𝑧

𝑢 = 𝑈
𝑣 = 0
𝑤 = 0

Airfoil

Close to the body velocity gradients 
are high, shear forces are high and 
flow becomes rotational.

Away from the body, flow has small velocity 
gradients (uniform-like flow), small shear 
forces and can remain irrotational.

Uniform 
approach 

velocity 
(irrotational)

• In an inviscid flow net shear force acting on a fluid element is zero.

• Only pressure and body forces act on the fluid element. But they cannot cause 
rotation because

• pressure forces act perpendicular to the element’s surface.

• body forces act through element’s center of gravity.

Exercise: Show how a fluid element will rotate inside the developing flow region 
of a pipe with uniform entrance.
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Inviscid and Irrotational Flow (cont’d)

Airfoil

Uniform 
upstream 

flow
(irrotational)

In an inviscid flow, a fluid element 
that originates from an irrotational 
flow region will remain irrotational.

• In general, flow fields are composed of both

• irrotational regions with negligible shear forces

• and rotational regions with considerable shear forces

• Sometimes rotational regions will be very thin such as high speed external flow 
over an airfoil.

• But still neglecting them and assuming the flow to be totally irrotational would 
yield unrealistic results.

Exercise: What will happen if we assume pipe flow with uniform entrance to be 
inviscid and irrotational?
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Inviscid and Irrotational Flow (cont’d)

Assuming external flow over a body to 
be inviscid and irrotational everywhere 
will result in zero air drag, which is not 
correct. This is known as d’Alambert’s 
paradox.

𝐹drag = ?

Note: There are other 
factors that can cause 
rotation, but they are 
not as common as 
viscous effects.

Exercise: Repeat the exercise of Slide 1-3 (derive BE) for irrotational flow.

• In an irrotational flow BE is valid between any two points of the flow field, not 
necessarily two points on the same streamline.
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BE for Irrotational Flow

1 2

3

𝑝

𝜌𝑔
+

𝑉2

2𝑔
+ 𝑧

1

=
𝑝

𝜌𝑔
+

𝑉2

2𝑔
+ 𝑧

2

=
𝑝

𝜌𝑔
+

𝑉2

2𝑔
+ 𝑧

3

Inviscid, irrotational 
flow over an object



1-9

Velocity Potential (𝜙)

• For an irrotational flow : 𝛻 × 𝑉 = 0

• As studied in ME 210, curl of the gradient of any scalar function is zero.

𝛻 × (𝛻𝜙) = 0

• Using these two equations we can define a velocity potential function (𝜙) as

𝑉 = +𝛻𝜙

• In an irrotational flow field, velocity vector can be expressed as the gradient of a 
scalar function called the velocity potential.

Some books use a minus sign so that 𝜙
decreases in the flow direction, similar to
temperature decreasing in the heat flow
direction. But we use plus in this course.

Phi: A scalar function 
called velocity potential
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Potential Flow

• For a 2D flow in the 𝑥𝑦 plane  :      𝑉 = 𝛻𝜙 → 𝑢 =
𝜕𝜙

𝜕𝑥
, 𝑣 =

𝜕𝜙

𝜕𝑦

• For a 2D flow in the 𝑟𝜃 plane  :      𝑉 = 𝛻𝜙 → 𝑉𝑟 =
𝜕𝜙

𝜕𝑟
, 𝑉𝜃 =

1

𝑟

𝜕𝜙

𝜕𝜃

• If the irrotational flow is also incompressible (In ME 306 we’ll NOT study 
compressible irrotational flows)

Continuity Equation :      𝛻 ⋅ 𝑉 = 0

𝛻 ⋅ 𝛻𝜙 = 0

𝛻2𝜙 = 0

• For an incompressible and irrotational flow, velocity potential satisfies the 
Laplace’s equation. These flows are called potential flows.

𝛻2 = 𝛻 ⋅ 𝛻 : Laplace operator

Laplace’s equation
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Velocity Potential (cont’d)

• 𝛻2𝜙 = 0

• Note that the relation between 𝑉 and 𝜙 is similar to that of 𝑉 and 𝜓.

In the 𝑥𝑦 plane :     
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0

In the 𝑟𝜃 plane :     
1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2

𝜕2𝜙

𝜕𝜃2 = 0

In the 𝑥𝑦 plane In the 𝑟𝜃 plane 

𝑢 =
𝜕𝜙

𝜕𝑥
𝑣 =

𝜕𝜙

𝜕𝑦

𝑢 =
𝜕𝜓

𝜕𝑦
𝑣 = −

𝜕𝜓

𝜕𝑥

𝑉𝑟 =
𝜕𝜙

𝜕𝑟
𝑉𝜃 =

1

𝑟

𝜕𝜙

𝜕𝜃

𝑉𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
𝑉𝜃 = −

𝜕𝜓

𝜕𝑟

Cauchy Riemann Equations 

Streamfunction
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Potential Flow Exercises

Exercise : Using Cauchy Riemann equations show that  streamfunction also satisfies 
the Laplace’s equation for incompressible, potential flows.

Exercise : Show that constant streamfunction lines (streamlines) are always 
perpendicular to constant velocity potential lines for incompressible, potential flows.

Exercise : Draw constant velocity potential lines of the following flow fields for which 
streamlines are shown. Constant velocity potential lines and streamlines drawn 
together form a flow net. What’s the ‘‘heat transfer’’ analogue of a flow net?

Flow near a corner Flow over a cylinder
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Exercise : The two-dimensional flow of a nonviscous, incompressible fluid in the 
vicinity of a corner is described by the stream function

𝜓 = 2𝑟2 sin(2𝜃)

where 𝜓 has units of m2/s when 𝑟 is in meters. Assume the fluid density is 
1000 kg/m3 and the 𝑥𝑦 plane is horizontal.

a) Determine, if possible, the corresponding velocity potential.

b) If the pressure at point 1 on the wall is 30 kPa, what is the pressure at point 2?

Reference: Munson’s book.

Potential Flow Exercises (cont’d)

𝑥

𝑦

𝑟

𝜃

1

2

1 m

0.5 m
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Exercise : A horizontal slice through a tornado is 
modeled by two distinct regions. The inner or core 
region (0 < 𝑟 < 𝑅) is modeled by solid body rotation. 
The outer region (𝑟 > 𝑅) is modeled as an irrotational 
region of flow. The flow is 2D in the 𝑟𝜃-plane, and the 
components of the velocity field are given by

𝑉𝑟 = 0 , 𝑉𝜃 =

𝜔𝑟 0 < 𝑟 < 𝑅

𝜔𝑅2

𝑟
𝑟 > 𝑅

where 𝜔 is the magnitude of the angular
velocity in the inner region. The ambient
pressure (far away from the tornado) is
equal to 𝑝∞. Obtain the shown nondimen-
sional pressure distribution.

Reference: Çengel’s book.

𝑟

𝑥

𝑦

𝜃

Inner
region

Outer region

0         1  2        3  4         5
𝑟/𝑅

𝑝 − 𝑝∞

𝜌𝜔2𝑅2

0

-0.2

-0.4

-0.6

-0.8

-1

Inner
region Outer region

Potential Flow Exercises (cont’d)

• 𝜙1 + 𝜙2 = 𝜙3 , 𝜓1 + 𝜓2 = 𝜓3 ,         𝑉1 + 𝑉2 = 𝑉3

• To obtain complicated flow fields we can combine elementary ones such as

• Uniform flow

• Line source/sink

• Vortex
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Superposition of Elementary Potential Flows

• Laplace’s equation is a linear PDE.

• Superposition can be applied to both velocity potential and streamfunction.

Potential flow 1 Potential flow 2 Potential flow 3

+ =
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1. Uniform Flow

• Consider uniform flow in the 𝑥𝑦 plane in +𝑥 direction.

𝑢 = 𝑈 ,      𝑣 = 0

• Let’s find the equation for velocity potential.

𝑢 =
𝜕𝜙

𝜕𝑥
→ 𝑈 =

𝜕𝜙

𝜕𝑥
→ 𝜙 = 𝑈𝑥 + 𝑓(𝑦)

𝑣 =
𝜕𝜙

𝜕𝑦
→ 0 =

𝜕𝜙

𝜕𝑦
→

𝑑𝑓

𝑑𝑦
= 0 → 𝑓 = constant

• Taking 𝑓 = 0 for simplicity

𝜙 = 𝑈𝑥

• Constant 𝜙 lines correspond to constant 𝑥 lines, i.e. lines parallel to the 𝑦 axis.

Exercise : Show that streamfunction equation is   𝜓 = 𝑈𝑦
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1. Uniform Flow (cont’d)

• Constant 𝜙 and constant 𝜓 lines are shown below.

𝑥

𝑦

𝜙
=

𝜙
0

𝜙
=

𝜙
1

𝜓 = 𝜓0

𝜓 = 𝜓1

Exercise : Determine the equations of 𝜙 and 𝜓
for uniform flow in a direction making an angle 
of 𝛽 with the 𝑥 axis.

𝑥

𝑦

𝛽

𝑈

• Consider the 2D flow emerging at the origin of the 𝑥𝑦 plane and going radially 
outward in all directions with a total flow rate per depth of 𝑞.

• Conservation of mass: 𝑞 = 2𝜋𝑟 𝑉𝑟 →

• 𝑉𝑟 decreases with 𝑟, i.e. effect of source diminishes with 𝑟.

• Origin is a singular point with 𝑉𝑟 → ∞, which is not physical, so don’t get too close.
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2. Line Source at the Origin

View from the top

𝑥

𝑦

Constant 
𝜙 lines

Streamlines

𝑞 :  Flow rate per depth
(Strength of source [m2/s])

𝑉𝑟 =
𝑞

2𝜋𝑟
, 𝑉𝜃 = 0

𝑥

𝑦

• Let’s find the equation for velocity potential.

𝑉𝑟 =
𝜕𝜙

𝜕𝑟
→

𝑞

2𝜋𝑟
=

𝜕𝜙

𝜕𝑟
→ 𝜙 =

𝑞

2𝜋
ln(𝑟) + 𝑓(𝜃)

𝑉𝜃 =
1

𝑟

𝜕𝜙

𝜕𝜃
→ 0 =

1

𝑟

𝑑𝑓

𝑑𝜃
→

𝑑𝑓

𝑑𝜃
= 0 → 𝑓 = constant

• Taking 𝑓 = 0 for simplicity

𝜙 =
𝑞

2𝜋
ln(𝑟)

• Constant 𝜙 lines correspond to constant 𝑟 lines as shown in the previous slide.

Exercise : Show that the streamfunction equation is  𝜓 =
𝑞

2𝜋
𝜃

• To study a line sink for which the flow is radially inward towards a point, simply 
use a negative 𝑞 value.
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2. Line Source (cont’d)

• Consider a line source that is located NOT at the origin.

• Equations for 𝜙 and 𝜓 change as follows

𝜙 =
𝑞

2𝜋
ln 𝑟1

𝜓 =
𝑞

2𝜋
𝜃1

or equivalently using 𝑥 and 𝑦 coordinates

𝜙 =
𝑞

2𝜋
ln 𝑥 − 𝑎 2 + 𝑦 − 𝑏 2

𝜓 =
𝑞

2𝜋
arctan

𝑦 − 𝑏

𝑥 − 𝑎
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2. Line Source (cont’d)

Some useful relations

𝑥 = 𝑟 cos(𝜃)

𝑦 = 𝑟 sin(𝜃)

𝑟 = 𝑥2 + 𝑦2

𝜃 = arctan
𝑦

𝑥

𝑥

𝑦

𝑟1
𝜃1

𝑏

𝑎

𝑟

𝜃

(𝑥, 𝑦)



• Studied in ME 305 as free vortex. Its velocity components are

𝑉𝜃 =
𝐾

𝑟
, 𝑉𝑟 = 0

• Using Cauchy Riemann relations we get

𝜙 = 𝐾𝜃 , 𝜓 = −𝐾 ln(𝑟)

• Compared to a line source, streamlines and constant potential lines are interchanged.
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3. Irrotational Vortex

𝑥

𝑦

Constant 
𝜙 lines

Streamlines
Similar to a line source/sink, 
origin is a singular point, 
where the velocity shoots to 
infinity.

𝑉𝜃 = 𝐾/𝑟 • Strength of a vortex is not given by 𝐾. Instead we use its circulation Γ.

• Circulation is the line integral of the tangential component of the velocity vector 
around a closed curve. It is related to the rotationality of the flow.
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Γ =  
𝐶

𝑉 ⋅ 𝑑  𝑠 [m2/s]

Differential vector 
along the path of 

integration
Closed path of 

integration

• For the 2D flow in the 𝑥𝑦 plane 
shown above

𝑉 = 𝑢 𝑖 + 𝑣 𝑗

𝑑  𝑠 = 𝑑𝑥 𝑖 + 𝑑𝑦 𝑗
Γ =  

𝐶

(𝑢𝑑𝑥 + 𝑣𝑑𝑦)

𝑥

𝑦

𝑉𝑑 𝑠

Closed 
curve 𝐶

3. Irrotational Vortex (cont’d)

Exercise: Calculate the circulation of an irrotational vortex for the following curve 𝐶

• Irrotational vortex is irrotational everywhere except the origin. All the circulation is 
squeezed into the origin, which is a singular point.

• Circulation Γ = 2𝜋𝐾 can be understood as the strength of the vortex. It’s in m2/s.

𝜙 =
Γ

2𝜋
𝜃 , 𝜓 = −

Γ

2𝜋
ln(𝑟)

• Direction of the vortex is determined as          Γ > 0 :  CCW (+𝑧) rotating vortex

Γ < 0 :  CW (−𝑧) rotating vortex
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3. Irrotational Vortex (cont’d)

𝑥

𝑦

𝑉𝜃 = 𝐾/𝑟Curve 𝐶

𝑅

Exercise: A liquid drains from a large tank through a small opening as illustrated. A 
vortex forms, whose velocity distribution away from the opening can be 
approximated as that of a free vortex. Determine an expression relating the surface 
shape to the strength of the vortex Γ.

Reference: Munson’s book
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3. Irrotational Vortex (cont’d)

𝑧 𝑟 =?

𝑧

𝑥
𝑦

𝑟𝑝𝑎𝑡𝑚



Exercise : Elementary components of a potential flow of water is shown below. 
Find the velocity and pressure at point A if the pressure at infinity is 100 kPa.
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Exercises for Elementary Potential Flows

Exercise : For the previous problem determine the equations of velocity potential 
and streamfunction by superimposing elementary flows. Find the velocity at point 
A by differentiating both 𝜙 and 𝜓 equation.

𝑈 = 3 m/s

𝛼 = 30°

𝑞 = 10 m2/s

𝑎 = 0.8 m

𝑏 = 0.6 m𝑥

𝑦

Sink (−𝑞)Source (𝑞)

𝑎

A

𝑏

𝑈
𝛼

Exercise: Study the flow obtained by the combination of uniform flow in 𝑥
direction and a source at the origin. Obtain the location of the stagnation point(s) 
and draw the stagnation streamline.
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Source in a Uniform Flow
(Flow Past a Half Body)

Uniform flow: 𝑢 = 𝑈 , 𝑣 = 0 , 𝜙 = 𝑈𝑥 , 𝜓 = 𝑈𝑦

Source: 𝑉𝑟 =
𝑞

2𝜋𝑟
, 𝑉𝜃 = 0 , 𝜙 =

𝑞

2𝜋
ln 𝑟 , 𝜓 =

𝑞

2𝜋
𝜃

𝑥

𝑦
𝑈

𝑞
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Flow Past a Half Body (cont’d)

• Flow outside the stagnation streamline resembles a flow over
a body with a blunt nose.

• Equation of the half body is given by the equation of the 
stagnation streamline.

𝑥

𝑦

𝑈

𝑠
𝑞

Movie
Flow Over Half Body

𝑈
𝑞/2𝜋𝑟

Stagnation point

𝑟𝑠 = 𝑞/2𝜋𝑈

Stagnation 
streamline

𝜓 = 𝑞/2

1-28

Flow Past a Half Body (cont’d)

Exercise : Consider the top part of a half body. Draw speed vs. 𝜃 and pressure vs. 𝜃
using the following values: 𝜌 = 1000 kg/m3 ,   𝑈 = 5 m/s ,   𝑞 = 10 m2/s and           
𝑝∞ = 100 kPa.

Exercise: A 64 km/h wind blows toward a hill that can be approximated with the 
top part of a half body. The maximum height of the hill approaches 60 m.

a) What is the air speed at a point directly above the origin (at point 2)?

b) What is the elevation of point 2?

c) What is the pressure difference between point 2 and point 1 far from the hill?

Reference: Munson’s book

64 km/h

2

𝑥

𝑦

60 m

1

𝑔



• Superposition of

• a source of strength 𝑞 at 𝑥 = −𝑐,

• a sink of strength −𝑞 at 𝑥 = 𝑐 and

• uniform flow of magnitude 𝑈.

• 𝜙 = 𝜙𝑢𝑛𝑖 + 𝜙𝑠𝑜𝑢 + 𝜙𝑠𝑖𝑛𝑘 = 𝑈𝑥 +
𝑞

2𝜋
ln 𝑟1 −

𝑞

2𝜋
ln(𝑟2)

• 𝜓 = 𝜓𝑢𝑛𝑖 + 𝜓𝑠𝑜𝑢 + 𝜓𝑠𝑖𝑛𝑘 = 𝑈𝑦 +
𝑞

2𝜋
𝜃1 −

𝑞

2𝜋
𝜃2
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A Source and a Sink in Uniform Flow
(Flow Past a Rankine oval)

𝑥

𝑦
𝑈

𝑐𝑐

𝑥

𝑦

𝑐𝑐

A
𝑟1 𝑟2𝜃1

𝜃2
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Flow Past a Rankine oval (cont’d)

Exercise : Determine the location of the stagnation points of the shown Rankine
oval. Determine its length and thickness of the oval. Plot the variation of speed 
and pressure (with respect to 𝑝∞) on it as a function of 𝜃.

𝑞
𝑥

𝑦

𝑈

−𝑞

𝑐 𝑐
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Doublet

• Superposition of

• a source of strength 𝑞 at the orgin (moved from – 𝑥 axis to the origin),

• a sink of strength −𝑞 at the origin (moved from +𝑥 axis to the origin) ,

• Consider the limiting case of the source and sink of Slide 1-29 approaching to the 
origin. Skipping the details we can get

𝜙𝑑𝑜𝑢𝑏𝑙𝑒𝑡 =
𝑑

2𝜋𝑟
cos 𝜃 , 𝜓𝑑𝑜𝑢𝑏𝑙𝑒𝑡 = −

𝑑

2𝜋𝑟
sin 𝜃

where 𝑑 is the strength of the doublet.

• Velocity field is given by

𝑉𝑟 =
𝜕𝜙

𝜕𝑟
= −

𝑑

2𝜋𝑟2 cos 𝜃

𝑉𝜃 =
1

𝑟

𝜕𝜙

𝜕𝜃
= −

𝑑

2𝜋𝑟2 sin 𝜃

𝑥

𝑦

Constant 𝜙 lines

Streamlines
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A Doublet in Uniform Flow (Flow Past a Cylinder)

• Superposition of

• a doublet of strength 𝑑 at the origin.

• uniform flow of magnitude 𝑈 in +𝑥 direction.

• 𝜙 = 𝜙𝑢𝑛𝑖 + 𝜙𝑑𝑜𝑢𝑏𝑙𝑒𝑡 = 𝑈𝑥 +
𝑑

2𝜋𝑟
cos(𝜃)

• 𝜓 = 𝜓𝑢𝑛𝑖 + 𝜓𝑑𝑜𝑢𝑏𝑙𝑒𝑡 = 𝑈𝑦 −
𝑑

2𝜋𝑟
sin(𝜃)

𝑥

𝑦
𝑈

𝑑



Important results are as follows

• Velocity components are

𝑉𝑟 = 𝑈 1 −
𝑅2

𝑟2
cos 𝜃 , 𝑉𝜃 = −𝑈 1 +

𝑅2

𝑟2
sin 𝜃

with 𝑅 = 𝑑/𝑈

• Stagnation points are located at (−𝑅, 0) and (𝑅, 0).

• Stagnation streamline is a circle of radius 𝑅.

• Velocity distribution on the cylinder is

1-33

Flow Past a Cylinder (cont’d)

𝑥

𝑦

𝑑

𝑅

𝑉𝜃𝑐𝑦𝑙 = −2𝑈 sin(𝜃)
𝑉𝜃𝑐𝑦𝑙

𝑈

2

1

0
0 𝜋/2 𝜋

𝜃 1-34

Flow Past a Cylinder (cont’d)

• Pressure distribution on the cylinder is 
(using BE with 𝑉∞ = 𝑈 and 𝑝∞)

𝑝𝑐𝑦𝑙 = 𝑝∞ +
𝜌𝑈2

2
1 − 4 sin2(𝜃)

• Pressure on the cylinder is symmetric 
with respect to both 𝑥 and 𝑦 axis.

• Pressure does not create any drag 
force (in 𝑥 direction) or any lift force 
(in 𝑦 direction).

𝐹𝑑𝑟𝑎𝑔 = −  
0

2𝜋

𝑝cyl cos 𝜃 𝑅𝑑𝜃 = 0

𝐹𝑙𝑖𝑓𝑡 = −  
0

2𝜋

𝑝cyl sin 𝜃 𝑅𝑑𝜃 = 0

0      𝜋/2 𝜋

𝛽

1

0

-1

-2

Potential

Experimental

𝑝𝑐𝑦𝑙 − 𝑝∞

𝜌𝑈2

2

-3

𝛽
𝑈

𝜃

𝑝𝑐𝑦𝑙

𝑅𝑑𝜃

𝐹𝑙𝑖𝑓𝑡

𝐹𝑑𝑟𝑎𝑔
𝑥

𝑦
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Flow Past a Cylinder (cont’d)

• As seen from the above exercise potential flow theory predicts ZERO DRAG FORCE
on the cylinder.

• Actually this is the case for any closed body, irrespective of its shape.

• This result is not physical and it is known as d’Alembert paradox (1752).

• In a real viscous flow

• shear stresses inside the boundary layer will cause a frictional drag force.

• viscous action will cause separation & the pressure at the front and back of the 
cylinder would not be symmetric.

Movie
Flow with Separation

Movie
Potential vs. Viscous
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Flow Past a Cylinder (cont’d)

𝑅𝑒𝐷 = 1.5 𝑅𝑒𝐷 = 26

𝑅𝑒𝐷 = 10000𝑅𝑒𝐷 = 2000 ‘‘An Album of Fluid Motion’’, by M. Van Dyke
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Flow Past a Cylinder (cont’d)

Exercise : When a small circular cylinder is placed in a uniform stream, a 
stagnation point is created on the cylinder. If a small hole is located at this point, 
the stagnation pressure, can be measured and used to determine the approach 
velocity, 𝑈 (similar to a Pitot tube).

a) Show how 𝑝𝑠𝑡𝑎𝑔 and 𝑈 are related. Pressure far away is 𝑝∞.

b) If the cylinder is misaligned by an angle 𝛼, but the measured pressure is still 
interpreted as the stagnation pressure, use potential flow theory to determine an 
expression for the ratio of the true velocity, 𝑈, to the predicted velocity, 𝑈′. Plot 
this ratio as a function of 𝛼 for the range 0° < 𝑎 < 20°.

Reference: Munson’s book.

𝑈

𝑅

Stagnation point

𝑈

𝛼
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Flow Past a Rotating Cylinder

• Superposition of

• a doublet of strength 𝑑 located at the origin,

• CCW rotating irrotational vortex of strength Γ
located at the origin,

• uniform flow of magnitude 𝑈.

• This will result in

𝜙 = 𝑈𝑟 1 +
𝑅2

𝑟2
cos 𝜃 +

Γ

2𝜋
𝜃

𝜓 = 𝑈𝑟 1 −
𝑅2

𝑟2
sin 𝜃 −

Γ

2𝜋
ln 𝑟

• This is the potential flow that resembles the flow over a rotating cylinder of 
radius 𝑅.

with 𝑅 = 𝑑/𝑈

𝑥

𝑦
𝑈

𝑑 Γ
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Flow Past a Rotating Cylinder (cont’d)

Exercise : For the flow shown above, obtain the following results

𝑉𝜃𝑐𝑦𝑙 = −2𝑈 sin 𝜃 +
Γ

2𝜋𝑅

𝑝𝑐𝑦𝑙 = 𝑝∞ +
𝜌𝑈2

2
1 − 4 sin2 𝜃 +

2Γ

𝜋𝑈𝑅
sin 𝜃 −

Γ

2𝜋𝑈𝑅

2

Integrate the above pressure distribution to get the following results

𝐹𝑑𝑟𝑎𝑔 = 0 ,           𝐹𝑙𝑖𝑓𝑡 = −𝜌Γ𝑈 (per unit depth)

𝑥

𝑦
𝑈

𝑑
Γ

𝑅

Γ = 0

Flow Past a Rotating Cylinder (cont’d)

Γ

4𝜋𝑈𝑅
< 1

Γ

4𝜋𝑈𝑅
> 1

Γ

4𝜋𝑈𝑅
= 1

• Streamlines and stagnation points for different circulation values.
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White’s book

𝑅



• Magnus Effect: A rotating body in a uniform flow will have a net lift force on it (1853).

• Direction of the lift force depends on the direction of 𝑈 and Γ.

Exercise: Determine the direction of
the lift force.
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Magnus Effect

Γ

𝑈

?

𝑈

Γ 𝜌Γ𝑈

Top

𝑉𝜃𝑡𝑜𝑝 = −2𝑈 +
Γ

2𝜋𝑅

Opposite signs

Velocity is low.

Pressure is high.

Bottom

𝑉𝜃𝑏𝑜𝑡𝑡𝑜𝑚 = 2𝑈 +
Γ

2𝜋𝑅

Same signs

Velocity is high.

Pressure is low.
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Magnus Effect (cont’d)

Exercise : Magnus effect acts not only on cylinders but also on other rotating bodies 
such as spheres. It can be used to explain how a spinning ball moves in a curved 
trajectory. A football player wants to make a penalty kick as sketched below. Will a 
CW or a CCW spin do the trick?

Exercise : Watch the following movies

https://www.youtube.com/watch?v=2OSrvzNW9FE (Suprising applications of Magnus effect) 
http://www.youtube.com/watch?v=23f1jvGUWJs (Magnus force on Veritasium channel) 
http://www.youtube.com/watch?v=2pQga7jxAyc (Enercon's rotor ship. Audio in German)
http://www.youtube.com/watch?v=wb5tc_nnMUw (Roberto Carlos knows the Magnus force)

?
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Magnus Effect (cont’d)

• Warning: Although potential flow theory can predict the direction of lift force 
due to Magnus effect correctly, it may give quite inaccurate values for its 
magnitude. We’ll come back to this in the next chapter.

Exercise: In 1920s Anton Flettner built a series of rotor ships that are propelled 
by rotating cylinders driven by electric motors. Read about Flettner’s ship at 
rexresearch.com/flettner/flettner.htm and understand how it works.

https://en.wikipedia.org/wiki/E-Ship_1One of Flettner’s original rotating cylinder ships
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Kutta Condition (Lift on an Airfoil)

• Magnus effect applies not only to cylinders but any closed shape.

• Consider the flow over a slender body with a sharp trailing edge, such as an airfoil.

• An airfoil is designed to generate small drag and high lift force.

• There are two stagnation points, 𝑠1 and 𝑠2.

• Experiments show that the streamlines leave the trailing edge smoothly as shown 
above, known as the Kutta condition.

𝑠1
𝑠2

https://www.youtube.com/watch?v=2OSrvzNW9FE
http://www.youtube.com/watch?v=23f1jvGUWJs
http://www.youtube.com/watch?v=2pQga7jxAyc
http://www.youtube.com/watch?v=wb5tc_nnMUw
http://www.rexresearch.com/flettner/flettner.htm
https://en.wikipedia.org/wiki/E-Ship_1


• The magnitude, Γ, of the necessary vortex can be used to calculate the lift force 
generated on the airfoil.

𝐹𝑙𝑖𝑓𝑡 = 𝜌 Γ 𝑈

• If we add the correct amount of CW vortex to this flow field we can bring point 𝑠2

down to the trailing edge and obtain the correct streamline pattern.
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Lift on an Airfoil (cont’d)

• Potential flow theory will predict an 
unphysical location for point 𝑠2. 

• It is impossible for streamlines to make 
such a sharp turn at the trailing edge.

𝑠1

𝑠2

Kutta-Joukowski Law (1902)

+
Γ

=

Wrong Correct
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Simulating Flows Near Walls using Mirror Images

• Consider a line source located at a distance 𝑏 to a solid wall.

• Fluid cannot pass across the wall and therefore it is a streamline.

• The effect of the wall can be simulated by using another source, which is the 
mirror image of the original one with respect to the wall.

Çengel’s book

Exercise : Consider a source of strength 𝑞 located close to two walls forming a 90o

corner.

a) How many and where the mirror images need to be placed to simulate 
existence of the walls?

b) Locate the stagnation point(s).

c) Draw the streamlines.

Exercise : Repeat the previous exercise by replacing the source with a clockwise 
vortex of strength Γ.
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Simulating Flows Near Walls using Mirror Images (cont’d)

𝑥

𝑦

Source (𝑞)

𝑎

𝑎
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Superposition Exercises

Exercise : We want to study the potential flow over the following bodies. If 
possible, which elementary flows need to be superimposed to get the desired 
shape?

𝑈

𝑈

𝑈

𝑈𝑈
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Numerical Solution of Potential Flow

• Obtaining complicated flow fields by superposing elementary ones is limited.

• To study potential flows on arbitrary geometries one can perform a numerical 
solution.

• Consider a flow inside an expanding duct (coordinates are in meters).

• Potential flow inside the duct can be obtained by solving Laplace’s equation

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 , with proper boundary conditions

10 m/s

5 m/s
(0,1)

(0,2)

(1,1)

(2,0)
(3,0)

(3,2)

𝑥

𝑦
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Numerical Solution of Potential Flow (cont’d)

• Boundary conditions are (study in the given order)

Bottom wall is a streamline. 𝜓
should be constant there. Let’s set 
it to zero.

𝜓bottom = 0

At the inlet 𝑢 = 10.

Therefore 
𝜕𝜓

𝜕𝑦
= 10.

𝜓 varies linearly from 0 to 10.

𝜓left = 10𝑦 − 10

Top wall is a streamline. 𝜓 should be constant 
there. In order to have 10 m2/s flow rate per 
depth between the top and bottom walls

𝜓top = 10

At the exit 𝑢 = 5.

Therefore 
𝜕𝜓

𝜕𝑦
= 5.

𝜓 varies linearly from 0 to 10.

𝜓right = 5𝑦
1

3

2

4
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Numerical Solution of Potential Flow (cont’d)

• Finite Difference Method can be used to get the numerical solution.

• First we discretize the problem domain into a set of nodes.

• Following mesh has 55 nodes with Δ𝑥 = Δ𝑦 = 1/3.

• 27 of the nodes are at the boundaries and 𝜓 is known at these nodes.

• 28 of the nodes are inside the domain and 𝜓 needs to be calculated at them.

Δ𝑥

Δ𝑦 𝑖, 𝑗
𝑖 + 1, 𝑗𝑖 − 1, 𝑗

𝑖, 𝑗 + 1

𝑖, 𝑗 − 1

5 point computational stencil
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Numerical Solution of Potential Flow (cont’d)

• Discretized form of the Laplace’s equation at node (𝑖, 𝑗) is

𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗

Δ𝑥 2 +
𝜓𝑖,𝑗+1 − 2𝜓𝑖,𝑗 + 𝜓𝑖,𝑗−1

Δ𝑦 2 = 0

• For Δ𝑥 = Δ𝑦, discretized equation for node (𝑖, 𝑗) becomes

𝜓𝑖+1,𝑗 + 𝜓𝑖−1,𝑗 + 𝜓𝑖,𝑗+1 + 𝜓𝑖,𝑗−1 − 4𝜓𝑖,𝑗 = 0

• This equation needs to be written for all non-boundary nodes.

• For nodes with boundary neighbors, some 𝜓 values are known and they need to be 
transferred to the right-hand-side of the equation.

• At the end we’ll get a system of 28 equations for 28 unknowns and solve it.

 
𝜕2𝜓

𝜕𝑥2

𝑖,𝑗

 
𝜕2𝜓

𝜕𝑦2

𝑖,𝑗



• Following solution is obtained using a mesh with Δ𝑥 = Δ𝑦 = 0.2.

• After obtaining the 𝜓 values at the nodes, velocity components can be obtained

𝑢 =
𝜕𝜓

𝜕𝑦
→ 𝑢𝑖,𝑗 =

𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1

2∆𝑦

𝑣 = −
𝜕𝜓

𝜕𝑥
→ 𝑣𝑖,𝑗 = −

𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗

2∆𝑥

• Different formulas need to be used at the boundary nodes.
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Numerical Solution of Potential Flow (cont’d)

White’s book

𝝍 = 10.00     10.00     10.00      10.00     10.00      10.00     10.00      10.00     10.00     10.00     10.00      10.00     1 0.00      10.00     10.00    10.00

8.00 8.02        8.04       8.07        8.12        8.20        8.30        8.41       8.52        8.62   8.71    8.79       8.85        8.91        8.95      9.00

6.00 6.03        6.06     6.12        6.22        6.37        6.58        6.82       7.05        7.26        7.44        7.59       7.71        7.82   7.91      8.00

4.00 4.03        4.07      4.13        4.26        4.48       4.84        5.24        5.61        5.93       6.19  6.41       6.59        6.74        6.88      7.00

2.00 2.02        2.05      2.09        2.20        2.44       3.08        3.69        4.22       4.65        5.00  5.28       5.50   5.69        5.85      6.00

𝝍 = 0.00       0.00        0.00      0.00        0.00        0.00 1.33        2.22        2.92       3.45        3.87        4.19       4.45        4.66        4.84      5.00

0.00 1.00        1.77   2.37        2.83        3.18        3.45       3.66        3.84      4.00

0.00 0.80       1.42     1.90        2.24        2.50  2.70        2.86      3.00

0.00 0.63      1.09     1.40        1.61     1.77        1.89      2.00

0.00 0.44       0.66     0.79    0.87        0.94      1.00

0.00         0.00    0.00     0.00      0.00      0.00

Red ones are 
boundary values Black ones are 

calculated
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Numerical Solution of Potential Flow (cont’d)

• After obtaining 𝑢 and 𝑣, pressures 
can be calculated using the Bernoulli 
equation.

• For irregular geometries 
modifications need to be done.

• Red node is NOT at ∆𝑥 distance from 
the central node. What can be done?

-0.8

White’s book

𝜓 = 10

2

4

6

8

Lower wall

Upper
wall

0.75

𝐶𝑝 =
𝑝 − 𝑝𝑖𝑛

𝜌𝑉𝑖𝑛
2 /2

1.0
0.8
0.6
0.4
0.2
0.0

-0.2
-0.4
-0.6

𝑉𝑖𝑛

𝑝𝑖𝑛


